
Numerical Methods
Some example applications in C++
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Numerical methods apply algorithms that use numerical

approximations to solve mathematical problems.

This is in contrast to applying symbolic analytical solutions,

for example Calculus.

We will look at very basic, but useful numerical algorithms for:

Introduction

1.Differentiation 2. Integration 3. Root finding



Key to the formulation of numerical techniques for differentiation, 

integration and root finding is Taylor’s expansion:

Taylor’s Expansion
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The value of a function at  x + h is given in terms of 

the values of derivatives of the function at x
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The general idea is to use a small number of terms in 

this series to approximate a solution.

In some cases we can improve on the solution by 

iterating the procedure  ideal task for a computer.



1. Numerical differentiation
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Aim

Given a function f(x), we wish to 

calculate the derivative f’(x); that is, 

the gradient of the function at x.

The Central Difference Approximation,

CDA, provides an approximation to 

this gradient:
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The approximation 

improves as the size 

of h reduces.

Limited precision in 

the computer prevents 

us from making h very 

small!

Proof



Problem
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For the following function, calculate the derivative at



Algorithm
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1. Define the function:

2. Set the parameters:

3 Calculate the CDA:

4 Output the result.

x = 2, h = 0.01 



C++ code
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// Central-Difference Approximation (CDA)

// for the derivative of a function f(x).

// Here, f(x)=2*x^3+5*x, h=0.01, x=2.0.

#include <iostream>

using namespace std;

double f(double x) { return 2*x*x*x + 5*x; }

int main() {

double x=2.0, h=0.01;

double cda = (f(x+h)-f(x-h))/(2*h);

cout << "f'(" << x << ") = " << cda << endl;

}

Output f'(2) = 29.0002
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Verification

The program gives us    f'(2) = 29.0002

We can verify that this is what we expect:

The function here is f(x) = 2 x3 + 5 x
From calculus we can obtain  f’(x) = 6 x2 + 5
and so the exact solution for f’(2) is 6*22 + 5 = 29.0000

We see that the error in the CDA is 29.0002 – 29.0000 = 0.0002

From analysis of Taylor’s expansion we predict the error
in the CDA as   h2 f’’’(x)/6 
= 0.012.12/6 = 0.0002

Our algorithm is working as predicted. 

From Calculus 

f(x) = 2 x3 + 5 x

f’(x) = 6 x2 + 5

f’’(x) = 12 x

f’’’(x) = 12
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A more difficult problem

So far the CDA does not look so useful, we have only solved

a trivial problem. Let’s try a more difficult function:

Analytical solution

Evaluate f’(4)



Adapt the C++ code for the new calculation
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// Central-Difference Approximation (CDA)

// for the derivative of a function f(x).

#include <iostream>

#include <cmath>

using namespace std;

double f(double x) {

return x*log(pow(x+5,x))/(2*x+pow(3,x));

}

int main() {

double x=4.0, h=0.01;

double cda = (f(x+h)-f(x-h))/(2*h);

cout << "f'(" << x << ") = " << cda << endl;

}

Output

f'(4) = -0.186348

The error is 

+0.000002



2. Numerical integration
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Aim

We wish to perform numerically

the following integral:

This is simply the area under the curve f(x) between a and b.

For example, 

How can we perform this numerically?



Formulating an algorithm

Numerical methods - applications in C++ 13

A first approximation can be obtained by forming a trapezoid.

Trapezoid area

= ½ (f(2)+f(4)) (4-2) = ½ (26+148) (2) = 174.

a b

The error in the 

result is16%
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An improved approximation can be obtained by forming

two trapezoids.
Trapezoid area

= ½ (f(2)+f(3)) (3-2) + ½ (f(3)+f(4)) (4-3) = 156

a b

The error in the 

result is 4%
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Four trapezoids. Trapezoid area
= ½ (f(2.0)+f(2.5)) (2.5-2.0) + ½ (f(2.5)+f(3.0)) (3.0-2.5)

+ ½ (f(3.0)+f(3.5)) (3.5-3.0) + ½ (f(3.5)+f(4.0)) (4.0-3.5)

= 151.5

a b

The error in the 

result is 1%

The error  1/n2

where n is the 

number of 

trapezoids.
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Formulating an algorithm

Generalising the procedure:



Algorithm
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1. Define the function:

2. Set the limits of the integral, and the number of trapezoids: 

3. Set

4. Calculate the ETF as

5. Output the result.

a = 2, b = 4, n = 100 



C++ code
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// Numerical integration via the Extended

// Trapezoidal Formula (ETF)

#include <iostream>

using namespace std;

double f(double x) { return 2*x*x*x + 5*x; }

int main() {

double a=2.0, b=4.0;

int n=100;

double h = (b-a)/n;

double etf = (f(a)+f(b))/2;

for (int i=1; i<n; i++) etf = etf + f(a+i*h);

etf = etf * h;

cout << "The integral = " << etf << endl;

}

Output

The integral = 150.002

Error = 0.002
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A more difficult problem



Adapt the previous C++ code
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#include <iostream>

#include <cmath>

using namespace std;

double f(double x) { 

return x * pow(0.5+exp(-x)*sin(x*x*x),2); }

int main() {

double a=0.0, b=M_PI;

int n=100;

double h = (b-a)/n;

double etf = (f(a)+f(b))/2;

for (int i=1; i<n; i++) etf = etf + f(a+i*h);

etf = etf * h;

cout << "The integral = " << etf << endl;

}

Output

The integral = 1.46937

The error is 

+0.00030



3. Root finding
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Aim

We wish to find the root x0 of

the function f(x);  i.e. f(x0) = 0.

How can we perform this numerically?

There are many ways to do this.

We will implement the Newton-Raphson method.... 



Formulating an algorithm
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The algorithm so far:

1. define f(x) and d(x)

2. Initialise x

3. Iterate:

e = f(x)/d(x)

x = x – e

4. Output x

But how many iterations?

d(x)

Obtaining an

error estimate:
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We have an estimate of the error

Use this to form a termination condition that requires

6 decimal place accuracy:

“ iterate until  < 10-9 ”   

Algorithm

1. define f(x) and d(x)

2. initialise x

3. iterate:

e = f(x)/d(x)

if  < 10-9 terminate

x = x – e

4. Output x

Example



C++ code
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// Newton-Raphson method for the root of f(x)

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

double f(double x) { return 2*x*x*x + 5; }

double d(double x) { return 6*x*x; }

int main() {

cout << setprecision(9) << fixed;

double e, x = -1.5;

while (true) {

e = f(x)/d(x);

cout << "x = " << x << endl;

if (fabs(e)<1.0e-6) break;

x = x - e;

}

}



Output

Numerical methods - applications in C++ 26

x = -1.500000000

x = -1.370370370

x = -1.357334812

x = -1.357208820

7 decimal place accuracy

The number of correct digits 

doubles on every iteration 

(rapid convergence)!



Finally
In this lecture we have looked at Numerical Methods.

More about numerical methods can be found at:

http://en.wikipedia.org/wiki/Numerical_methods

http://en.wikipedia.org/wiki/Numerical_methods

