
Numerical Methods
Some example applications in C++

Numerical methods - applications in C++ 2

Numerical methods apply algorithms that use numerical

approximations to solve mathematical problems.

This is in contrast to applying symbolic analytical solutions,

for example Calculus.

We will look at very basic, but useful numerical algorithms for:

Introduction

1.Differentiation 2. Integration 3. Root finding

Key to the formulation of numerical techniques for differentiation,

integration and root finding is Taylor’s expansion:

Taylor’s Expansion

Numerical methods - applications in C++ 3

The value of a function at x + h is given in terms of

the values of derivatives of the function at x

...)('''
!3

)(''
!2

)('
!1

)()(
321

 xf
h

xf
h

xf
h

xfhxf

The general idea is to use a small number of terms in

this series to approximate a solution.

In some cases we can improve on the solution by

iterating the procedure ideal task for a computer.

1. Numerical differentiation

Numerical methods - applications in C++ 4

Aim

Given a function f(x), we wish to

calculate the derivative f’(x); that is,

the gradient of the function at x.

The Central Difference Approximation,

CDA, provides an approximation to

this gradient:

Numerical methods - applications in C++ 5

The approximation

improves as the size

of h reduces.

Limited precision in

the computer prevents

us from making h very

small!

Proof

Problem

Numerical methods - applications in C++ 6

For the following function, calculate the derivative at

Algorithm

Numerical methods - applications in C++ 7

1. Define the function:

2. Set the parameters:

3 Calculate the CDA:

4 Output the result.

x = 2, h = 0.01

C++ code

Numerical methods - applications in C++ 8

// Central-Difference Approximation (CDA)

// for the derivative of a function f(x).

// Here, f(x)=2*x^3+5*x, h=0.01, x=2.0.

#include <iostream>

using namespace std;

double f(double x) { return 2*x*x*x + 5*x; }

int main() {

double x=2.0, h=0.01;

double cda = (f(x+h)-f(x-h))/(2*h);

cout << "f'(" << x << ") = " << cda << endl;

}

Output f'(2) = 29.0002

Numerical methods - applications in C++ 9

Verification

The program gives us f'(2) = 29.0002

We can verify that this is what we expect:

The function here is f(x) = 2 x3 + 5 x
From calculus we can obtain f’(x) = 6 x2 + 5
and so the exact solution for f’(2) is 6*22 + 5 = 29.0000

We see that the error in the CDA is 29.0002 – 29.0000 = 0.0002

From analysis of Taylor’s expansion we predict the error
in the CDA as h2 f’’’(x)/6
= 0.012.12/6 = 0.0002

Our algorithm is working as predicted.

From Calculus

f(x) = 2 x3 + 5 x

f’(x) = 6 x2 + 5

f’’(x) = 12 x

f’’’(x) = 12

Numerical methods - applications in C++ 10

A more difficult problem

So far the CDA does not look so useful, we have only solved

a trivial problem. Let’s try a more difficult function:

Analytical solution

Evaluate f’(4)

Adapt the C++ code for the new calculation

Numerical methods - applications in C++ 11

// Central-Difference Approximation (CDA)

// for the derivative of a function f(x).

#include <iostream>

#include <cmath>

using namespace std;

double f(double x) {

return x*log(pow(x+5,x))/(2*x+pow(3,x));

}

int main() {

double x=4.0, h=0.01;

double cda = (f(x+h)-f(x-h))/(2*h);

cout << "f'(" << x << ") = " << cda << endl;

}

Output

f'(4) = -0.186348

The error is

+0.000002

2. Numerical integration

Numerical methods - applications in C++ 12

Aim

We wish to perform numerically

the following integral:

This is simply the area under the curve f(x) between a and b.

For example,

How can we perform this numerically?

Formulating an algorithm

Numerical methods - applications in C++ 13

A first approximation can be obtained by forming a trapezoid.

Trapezoid area

= ½ (f(2)+f(4)) (4-2) = ½ (26+148) (2) = 174.

a b

The error in the

result is16%

Numerical methods - applications in C++ 14

An improved approximation can be obtained by forming

two trapezoids.
Trapezoid area

= ½ (f(2)+f(3)) (3-2) + ½ (f(3)+f(4)) (4-3) = 156

a b

The error in the

result is 4%

Numerical methods - applications in C++ 15

Four trapezoids. Trapezoid area
= ½ (f(2.0)+f(2.5)) (2.5-2.0) + ½ (f(2.5)+f(3.0)) (3.0-2.5)

+ ½ (f(3.0)+f(3.5)) (3.5-3.0) + ½ (f(3.5)+f(4.0)) (4.0-3.5)

= 151.5

a b

The error in the

result is 1%

The error 1/n2

where n is the

number of

trapezoids.

Numerical methods - applications in C++ 16

Formulating an algorithm

Generalising the procedure:

Algorithm

Numerical methods - applications in C++ 17

1. Define the function:

2. Set the limits of the integral, and the number of trapezoids:

3. Set

4. Calculate the ETF as

5. Output the result.

a = 2, b = 4, n = 100

C++ code

Numerical methods - applications in C++ 18

// Numerical integration via the Extended

// Trapezoidal Formula (ETF)

#include <iostream>

using namespace std;

double f(double x) { return 2*x*x*x + 5*x; }

int main() {

double a=2.0, b=4.0;

int n=100;

double h = (b-a)/n;

double etf = (f(a)+f(b))/2;

for (int i=1; i<n; i++) etf = etf + f(a+i*h);

etf = etf * h;

cout << "The integral = " << etf << endl;

}

Output

The integral = 150.002

Error = 0.002

Numerical methods - applications in C++ 19

A more difficult problem

Adapt the previous C++ code

Numerical methods - applications in C++ 20

#include <iostream>

#include <cmath>

using namespace std;

double f(double x) {

return x * pow(0.5+exp(-x)*sin(x*x*x),2); }

int main() {

double a=0.0, b=M_PI;

int n=100;

double h = (b-a)/n;

double etf = (f(a)+f(b))/2;

for (int i=1; i<n; i++) etf = etf + f(a+i*h);

etf = etf * h;

cout << "The integral = " << etf << endl;

}

Output

The integral = 1.46937

The error is

+0.00030

3. Root finding

Numerical methods - applications in C++ 21

Aim

We wish to find the root x0 of

the function f(x); i.e. f(x0) = 0.

How can we perform this numerically?

There are many ways to do this.

We will implement the Newton-Raphson method....

Formulating an algorithm

Numerical methods - applications in C++ 22

Numerical methods - applications in C++ 23

The algorithm so far:

1. define f(x) and d(x)

2. Initialise x

3. Iterate:

e = f(x)/d(x)

x = x – e

4. Output x

But how many iterations?

d(x)

Obtaining an

error estimate:

Numerical methods - applications in C++ 24

We have an estimate of the error

Use this to form a termination condition that requires

6 decimal place accuracy:

“ iterate until < 10-9 ”

Algorithm

1. define f(x) and d(x)

2. initialise x

3. iterate:

e = f(x)/d(x)

if < 10-9 terminate

x = x – e

4. Output x

Example

C++ code

Numerical methods - applications in C++ 25

// Newton-Raphson method for the root of f(x)

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

double f(double x) { return 2*x*x*x + 5; }

double d(double x) { return 6*x*x; }

int main() {

cout << setprecision(9) << fixed;

double e, x = -1.5;

while (true) {

e = f(x)/d(x);

cout << "x = " << x << endl;

if (fabs(e)<1.0e-6) break;

x = x - e;

}

}

Output

Numerical methods - applications in C++ 26

x = -1.500000000

x = -1.370370370

x = -1.357334812

x = -1.357208820

7 decimal place accuracy

The number of correct digits

doubles on every iteration

(rapid convergence)!

Finally
In this lecture we have looked at Numerical Methods.

More about numerical methods can be found at:

http://en.wikipedia.org/wiki/Numerical_methods

http://en.wikipedia.org/wiki/Numerical_methods

