

Some example applications in C_{++}

Introduction

Numerical methods apply algorithms that use numerical approximations to solve mathematical problems.

This is in contrast to applying symbolic analytical solutions, for example Calculus.

We will look at very basic, but useful numerical algorithms for:
1.Differentiation

2. Integration

3. Root finding

Taylor's Expansion

Key to the formulation of numerical techniques for differentiation, integration and root finding is Taylor's expansion:

$$
f(x+h)=f(x)+\frac{h^{1}}{1!} f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(x)+\ldots
$$

The value of a function at $x+h$ is given in terms of the values of derivatives of the function at x

The general idea is to use a small number of terms in this series to approximate a solution.
In some cases we can improve on the solution by iterating the procedure \Rightarrow ideal task for a computer.

1. Numerical differentiation

Aim
Given a function $f(x)$, we wish to calculate the derivative $f^{\prime}(x)$; that is, the gradient of the function at x.

The Central Difference Approximation, CDA, provides an approximation to this gradient:

$$
C D A=\frac{f(x+h)-f(x-h)}{2 h} \approx f^{\prime}(x)
$$

Proof

$$
C D A=\frac{f(x+h)-f(x-h)}{2 h} \approx f^{\prime}(x)
$$

Proof:
Taylor's expansion,

$$
\begin{aligned}
& f(x+h)=f(x)+\frac{h f^{\prime}(x)}{1!}+\frac{h^{2} f^{\prime \prime}(x)}{2!}+\frac{h^{3} f^{\prime \prime \prime}(x)}{3!}+\cdots \\
& f(x-h)=f(x)-\frac{h f^{\prime}(x)}{1!}+\frac{h^{2} f^{\prime \prime}(x)}{2!}-h^{3} \frac{f^{\prime \prime \prime}(x)}{3!}+\cdots \\
& \Rightarrow C D A=f^{\prime}(x)+\frac{h^{2}}{6} f^{\prime \prime \prime}(x)+O\left(h^{4}\right) \\
& \text { i.e } C D A \approx f^{\prime}(x) \\
& \text { the error } \approx \frac{h^{2}}{6} f^{\prime \prime \prime}(x)
\end{aligned}
$$

The approximation improves as the size of h reduces.

Limited precision in the computer prevents us from making h very small!

Problem

For the following function, calculate the derivative at $x=2$

Algorithm

1. Define the function:

$$
f(x)=2 x^{3}+5 x
$$

2. Set the parameters:

$$
x=2, h=0.01
$$

3 Calculate the CDA:

$$
C D A=\frac{f(x+h)-f(x-h)}{2 h}
$$

4 Output the result.

C++ code

// Central-Difference Approximation (CDA)
// for the derivative of a function $f(x)$.
$/ /$ Here, $f(x)=2 * x^{\wedge} 3+5 * x, h=0.01, x=2.0$.
\#include <iostream>
using namespace std;

double $f($ double $x)$ \{ return $2 * x * x * x+5 * x ;\}$
int main() \{
double $x=2.0, h=0.01$;
double cda $=(f(x+h)-f(x-h)) /(2 * h)$;
cout \ll "f' (" << x << ") $=$ " << cda << endl;
\}
Output $f^{\prime}(2)=29.0002$

Verification

$$
\begin{aligned}
& \text { From Calculus } \\
& f(x)=2 x^{3}+5 x \\
& f^{\prime}(x)=6 x^{2}+5 \\
& f^{\prime \prime}(x)=12 x \\
& f^{\prime \prime \prime}(x)=12
\end{aligned}
$$

The function here is $f(x)=2 x^{3}+5 x$ From calculus we can obtain $f^{\prime}(x)=6 x^{2}+5$ and so the exact solution for $f^{\prime}(2)$ is $6^{*} 2^{2}+5=\underline{29.0000}$

We see that the error in the CDA is $29.0002-29.0000=\underline{0.0002}$
From analysis of Taylor's expansion we predict the error in the CDA as $\approx h^{2} f^{\prime \prime \prime}(x) / 6$
$=0.01^{2} .12 / 6=\underline{0.0002}$
Our algorithm is working as predicted.

A more difficult problem

So far the CDA does not look so useful, we have only solved a trivial problem. Let's try a more difficult function:

Analytical solution

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(2 x+3^{x}\right) x^{2}+(x+5)\left(2 x+3^{x}\right) x \log (x+5)-3^{x}(x+5)(x \log (3)-1) \log \left((x+5)^{x}\right)}{(x+5)\left(2 x+3^{x}\right)^{2}} \\
& \quad \approx-0.1863498
\end{aligned}
$$

Adapt the C++ code for the new calculation

```
// Central-Difference Approximation (CDA)
// for the derivative of a function f(x).
#include <iostream>
#include <cmath>
using namespace std;
double f(double x) {
    return x*log(pow(x+5,x))/(2*x+pow(3,x));
}
int main() {
    double x=4.0, h=0.01;
    double cda = (f(x+h)-f(x-h))/(2*h);
        f'(4) = -0.186348
```

The error is
$+0.000002$

2. Numerical integration

Aim
We wish to perform numerically the following integral:

$$
\int_{a}^{b} f(x) d x
$$

This is simply the area under the curve $f(x)$ between a and b.
For example, $\quad \int_{2}^{4}\left(5 x+2 x^{3}\right) d x=150$
How can we perform this numerically?

Formulating an algorithm

A first approximation can be obtained by forming a trapezoid.

An improved approximation can be obtained by forming two trapezoids.

$$
\begin{aligned}
& \text { Trapezoid area } \\
& =1 / 2(f(2)+f(3))(3-2)+1 / 2(f(3)+f(4))(4-3)=156
\end{aligned}
$$

$f(x)=2 x^{3}+5 x$

$\int_{2}^{4}\left(5 x+2 x^{3}\right) d x=150$
The error in the result is 4%

Four trapezoids. Trapezoid area

$$
\begin{aligned}
& =1 / 2(f(2.0)+f(2.5))(2.5-2.0)+1 / 2(f(2.5)+f(3.0))(3.0-2.5) \\
& +1 / 2(f(3.0)+f(3.5))(3.5-3.0)+1 / 2(f(3.5)+f(4.0))(4.0-3.5) \\
& =151.5
\end{aligned}
$$

$$
f(x)=2 x^{3}+5 x
$$

$$
\int_{2}^{4}\left(5 x+2 x^{3}\right) d x=150
$$

The error in the result is 1%

The error $\propto 1 / n^{2}$ where n is the number of trapezoids.

Formulating an algorithm
Generalising the procedure:
we want the integral $\int_{a}^{b} f(x) d x$.
First -consider approximating with five trapezoids:

$$
\begin{array}{rlr}
A=\frac{h}{2}\left(f\left(x_{0}\right)+f\left(x_{1}\right)\right) & h=\frac{x_{5}-x_{0}}{5} \\
B=\frac{h}{2}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right) & =\frac{b-a}{5} \\
C=\frac{h}{2}\left(f\left(x_{2}\right)+f\left(x_{2}\right)\right) & \text { let } f_{i} \equiv f\left(x_{i}\right)
\end{array}
$$

$$
\begin{aligned}
& A+B+C+D+E=\text { Extended Trapezcidal Formula } \\
& h\left(f_{0} / 2+f_{1}+f_{2}+f_{3}+f_{4}+f_{5} / 2\right) \quad \text { (ETF). }
\end{aligned}
$$

For n intervals

$$
E T F=h\left(\frac{f_{0}}{2}+f_{1}+f_{2}+f_{3}+\cdots \cdot+f_{A-1}+\frac{f_{n}}{2}\right)
$$

with $h=\frac{b-a}{n} \quad x_{i}=a+i h, i=0,1,2, \ldots, n$

Algorithm

1. Define the function: $f(x)=2 x^{3}+5 x$
2. Set the limits of the integral, and the number of trapezoids:

$$
a=2, b=4, n=100
$$

3. Set $h=\frac{b-a}{n}$
4. Calculate the ETF as
$E T F=h\left(\frac{f_{0}}{2}+f_{1}+f_{2}+f_{3}+\cdots+f_{A-1}+\frac{f_{n}}{2}\right)$
with $f_{i} \equiv f\left(x_{i}\right) x_{i}=a+i h, i=0,1,2, \ldots, n$
5. Output the result.

$$
\begin{aligned}
& \text { ETF }=h\left(\frac{f_{0}}{2}+f_{1}+f_{2}+f_{3}+\ldots \ldots+f_{A-1}+\frac{f_{n}}{2}\right) \\
& \text { with } f_{i}=f\left(x_{i}\right) x_{i}=a+i h, i=0,1, \ldots, n
\end{aligned}
$$

C++ code

// Numerical integration via the Extended // Trapezoidal Formula (ETF)

$$
h=\frac{b-a}{n}
$$

\#include <iostream>

using namespace std;
double $f($ double $x)$ \{ return $2 * x^{*} \mathbf{x}^{*} \mathbf{x}+5{ }^{*} \mathbf{x}$; \}
int main() \{
Output
double $a=2.0, b=4.0$;
The integral $=150.002$
int $\mathrm{n}=100$;
Error $=0.002$
double $h=(b-a) / n$;
double etf $=(f(a)+f(b)) / 2$;
for (int $i=1 ; i<n ; i++)$ etf $=$ etf $+f(a+i * h)$;
etf $=$ etf * h;
cout << "The integral $=$ " << etf \ll endl;
\}

A more difficult problem

$$
\int_{0}^{\pi} x\left(\frac{1}{2}+e^{-x} \sin \left(x^{3}\right)\right)^{2} d x
$$

integrate $x\left(0.5+\exp (-x) \sin \left(x^{\wedge} 3\right)\right)^{\wedge} 2$ from 0 to pi 素WalframAlpha

Adapt the previous C++ code

```
#include <iostream>
#include <cmath>
using namespace std;
double f(double x) {
    return x * pow(0.5+exp(-x)*sin(x*x*x),2); }
int main() {
    double a=0.0, b=M_PI;
    int n=100;
    double h = (b-a)/n;
    double etf = (f(a)+f(b))/2;
    for (int i=1; i<n; i++) etf = etf + f(a+i*h);
    etf = etf * h;
    cout << "The integral = " << etf << endl;
}
```


3. Root finding

Aim
We wish to find the root x_{0} of the function $f(x)$; i.e. $f\left(x_{0}\right)=0$.

How can we perform this numerically?

There are many ways to do this.
We will implement the Newton-Raphson method....

Formulating an algorithm
let x_{0} be the root of a function $f(x)$ ie $f\left(x_{0}\right)=0$. Let x be an estimate of x_{0}, and ε be the error in this estimate; i.e $\varepsilon=x-x_{0}$ or $x_{0}=x-\varepsilon$.

If we can obtain a good estimate of ε then we can improve our root estimate $x_{i+1}=x_{i}-\varepsilon_{i} \quad$ iteratively-

Obtaining an error estimate:

Taylor's expansion:

$$
\begin{aligned}
0 & =f\left(x_{0}\right)=f(x-\varepsilon) \\
& =f(x) \frac{\varepsilon f^{\prime}(x)}{1!}+\frac{\varepsilon^{2} f^{\prime \prime}(x)}{2!}-\frac{\varepsilon^{3} f^{\prime \prime \prime}(x)}{3!}+\cdots \cdots
\end{aligned}
$$

dropping $O\left(\varepsilon^{2}\right)$ terms gives

$$
\begin{aligned}
& 0 \approx f(x)-\varepsilon f^{\prime}(x) \\
& \Rightarrow \varepsilon \approx f(x) / f^{\prime}(x)
\end{aligned}
$$

Then

$$
x_{i+1}=x_{i}-f\left(x_{i}\right) / f^{\prime}\left(x_{i}\right)
$$

Newton-Raphson iterative formula for the root-ot $f(x)$.

The algorithm so far:

1. define $f(x)$ and $d(x)$
2. Initialise x
3. Iterate:

$$
\begin{aligned}
& e=f(x) / d(x) \\
& x=x-e
\end{aligned}
$$

4. Output x

But how many iterations?

We have an estimate of the error $\varepsilon \approx f(x) / f^{\prime}(x)$

Use this to form a termination condition that requires 6 decimal place accuracy:
" iterate until $\boldsymbol{\varepsilon}<10^{-9}$ "

Algorithm

1. define $f(x)$ and $d(x)$
2. initialise x
3. iterate:

$$
\begin{aligned}
& e=f(x) / d(x) \\
& \text { if } \varepsilon<10^{-9} \text { terminate } \\
& x=x-e
\end{aligned}
$$

4. Output x

Example $f(x)=2 x^{3}+5$
Rootplot:

C++ code

$$
\begin{aligned}
& f(x)=2 x^{3}+5 \\
& f^{\prime}(x)=6 x^{2}
\end{aligned}
$$

```
// Newton-Raphson method for the root of f(x)
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
double f(double x) { return 2*x*x*x + 5; }
double d(double x) { return 6*x*x; }
int main() {
    cout << setprecision(9) << fixed;
    double e, x = -1.5;
    while (true) {
        e = f(x)/d(x);
        cout << "x = " << x << endl;
        if (fabs(e)<1.0e-6) break;
        x = x - e;
    }
}
```


Output

$$
\begin{aligned}
& \begin{array}{l}
\mathbf{x}=-1.500000000 \\
\mathbf{x}=-1.370370370 \\
\mathbf{x}=-1.357334812 \\
\mathbf{x}=-1.357208820
\end{array} \quad \begin{array}{l}
\text { The number of correct digits } \\
\text { doubles on every iteration } \\
\text { (rapid convergence)! }
\end{array} \\
& f(x)=2 x^{3}+5 \quad 7 \text { decimal place accuracy } \\
& x=-\sqrt[3]{\frac{5}{2}} \approx-1.357208808297
\end{aligned}
$$

Finally

In this lecture we have looked at Numerical Methods.

More about numerical methods can be found at: http://en.wikipedia.org/wiki/Numerical methods

