
Monte Carlo Methods
Some example applications in C++



Monte Carlo methods - applications in C++ 2

http://en.wikipedia.org/wiki/Monte_Carlo_method

“Monte Carlo methods (or Monte Carlo experiments) are a class of

computational algorithms that rely on repeated random sampling to

compute their results.

Monte Carlo methods are often used in simulating physical

and mathematical systems.”

To illustrate the implementation of this kind of algorithm in C++ 

we will look at just a few basic applications where the MC 

method can help us solve problems in:

Introduction

Maxima, Minima and Optimization

Probability and Counting Experiments



Key to the Monte Carlo method is the generation of sequences of 

random numbers. 

C++ has a built-in function for this:

rand() returns a number randomly selected

in the range 0 to RAND_MAX

Note that the sequence of number is not actually random, an algorithm

is used to generate the numbers in a chaotic manner with a large

period(the number of values returned before the sequence repeats).

Related function:

srand(n) sets the seed of the random number

generator to n (to allow us to obtain

different sequences of random numbers).

The rand() function

Monte Carlo methods - applications in C++ 3



Generating and processing rand() values

Monte Carlo methods use large sets of random numbers,
so we generally place the rand() function inside a large loop.

For example:

Monte Carlo methods - applications in C++ 4

#include <iostream>

#include <cstdlib>

using namespace std;

int main() {

int n = 100000;

cout << RAND_MAX << endl;

for (int i=0; i<n; i++) {

int k = rand();

cout << k << endl;

}

}

2147483647

1804289383

846930886

1681692777

1714636915

1957747793

424238335

719885386

1649760492

.

.

Note that the cstdlib

header is required.



Monte Carlo methods - applications in C++ 5

Obtaining a discrete uniform distribution

For example if we want to simulate

the throw of a die having six discrete

random outcomes, all with equal probability:

int k = 1 + rand() % 6;

k

Modulo 6 returns 

0 ≤ k ≤ 5

+1 gives 1 ≤ k ≤ 6

Store in integer k
Histogram



C++ code

Monte Carlo methods - applications in C++ 6

#include <iostream>

#include <cstdlib>

using namespace std;

int main() {

srand(12345678);

for (int i=0; i<10; i++) {

int d = 1 + rand() % 6;

cout << d << endl;

}

}

2

6

4

6

3

1

4

2

6

6

Output

4

6

3

2

4

1

1

3

5

2

1

5

6

1

6

6

5

6

5

1

Seed = 12345679

Seed = 12345678
Seed = 12345680

Roll ten dice:



Monte Carlo methods - applications in C++ 7

Obtaining a continuous uniform distribution

Often we require floating-point random values:

double r = rand()/(1.0+RAND_MAX);

Returns 0.0 ≤ r < 1.0

Cast to a double value slightly
larger than RAND_MAX

0.24308  0.62229

0.77675  0.46182

0.24792  0.95476

0.74463  0.52671

Example sequence:

Histogram of r r = 1.0 would be an overflow in the histogram



Monte Carlo methods - applications in C++ 8

Example

Populate a square with n

randomly-place points

[the blue and red points]

Count the number of 

points m that lie inside the 

circle [the blue points]

The ratio 4m/n is then an 

approximation to the area 

of the circle (the area of 

the square being 4 units2)

and therefore an 

approximation to .

-1.0 ≤ x < +1.0

-1.0 ≤ y < +1.0



C++ code

Monte Carlo methods - applications in C++ 9

#include <iostream>

#include <cstdlib>

using namespace std;

int main() {

int n = 100000;

int m = 0;

for (int i=0; i<n; i++) {

double x = 2.0*rand()/(RAND_MAX+1.0) -1.0;

double y = 2.0*rand()/(RAND_MAX+1.0) -1.0;

if ( x*x+y*y < 1.0 ) m++;

}

cout << 4.0*m/n << endl;

}

3.14376

2.84

3.1288

3.14307

3.14162

3.14159

n

102

104

106

108



Convergence

A factor of 100

increase in n

yields a factor of

10 improvement

in accuracy

Output for
n = 105

This method works! but requires very large statistics to obtain good accuracy.

-1.0 ≤ x < +1.0

-1.0 ≤ y < +1.0



Maxima/Minima 

Monte Carlo methods - applications in C++ 10

Aim

We wish find the maximum or minimum of a function f(x).

For example, find the maximum of the following function in the

range 0 ≤ x < 

How can we do this with

random numbers?

Solution
Generate a large number of

random values x in the range

0 ≤ x < , evaluate f(x) at each

point, record the position of the

largest value.

x

f(x)

0



C++ code

Monte Carlo methods - applications in C++ 11

#include <iostream>

#include <cmath>

#include <cstdlib>

using namespace std;

int main() {

int n = 100000;

double xmax = 0., fmax = 0.;

for (int i=0; i<n; i++) {

double x = M_PI * rand()/(RAND_MAX+1.0);

double f = x*pow((0.5+exp(-x)*sin(x*x*x)),2);

if ( f > fmax ) {

fmax = f;

xmax = x;

}

}

cout << "f=" << fmax << endl;

cout << "x=" << xmax << endl;

}

Output for

n = 105

f=0.90536

x=2.99013

f=0.837919

f=0.905246

f=0.904914

f=0.905358

f=0.905360

n

101

102

103

104

105

Convergence

http://www.wolframalpha.com/

time = 12 ms

0 ≤ x < 



Optimization 

Monte Carlo methods - applications in C++ 12

Aim

Similar to the idea of obtaining the maximum or minimum 

of a function, we sometimes wish to optimize a system;

i.e.  maximise or minimize a target quantity.

Example

We have 50 meters of fencing 

and wish to construct a fenced 

rectangular area, sides a and b

with the target of maximizing 

the area A = a b enclosed by 

the fence.

A = a b a

b

2a + 2b = 50  b = 25 – a with 0 < a < 25

a

b



C++ code

Monte Carlo methods - applications in C++ 13

#include <iostream>

#include <cstdlib>

using namespace std;

int main() {

int n = 1e5;

double max_area = 0., max_a = 0.;

for (int i=0; i<n; i++) {

double a = 25.0 * rand()/(RAND_MAX+1.0);

double b = 25.0 - a;

double area = a*b;

if ( area > max_area ) {

max_area = area;

max_a = a;

}

}

cout << max_a << endl;

}

Output for
n = 105

12.4998

13.8492

12.3396

12.4631

12.5005

12.4998

12.5000

n

101

102

103

104

105

106

Convergence

time = 1 ms

12.5

12.5

b = 25 – a

with 0 < a < 25



Probability and Counting Experiments

Monte Carlo methods - applications in C++ 14

Aim
Many physical systems are governed by random processes.

Common examples are the tossing of a coin and the throw of dice. 

Monte Carlo methods allow us to simulate such systems and calculate 

outcomes in terms of probabilities.

For example, two coins and one die 

are thrown. What is the probability of 

obtaining a “Tail”, “Head” and a “6” in 

any order: P(“T”,“H”,“6”) ?

Head “H”

Tail “T”

“6”

Solution; throw n times and count the 

number of times m that we get the 

outcome.

Then   m / n  P(T,H,6) as n   Experimental definition of probability



C++ code

Monte Carlo methods - applications in C++ 15

#include <iostream>

#include <cstdlib>

using namespace std;

int main() {

int n = 1e5;

int m = 0;

for (int i=0; i<n; i++) {

int die = rand() % 6 + 1;

int coin1 = rand() % 2;

int coin2 = rand() % 2;

if ( die==6 && (coin1 != coin2) ) m++;

}

cout << "1/" << 1/(double(m)/n) << endl;

}

This method works! but requires very large statistics to obtain good accuracy.

1/11.925

1/7.6923

1/10.870

1/11.933

1/11.925

1/11.997

1/12.017

1/11.996

1/12.001

n

102

103

104

105

106

107

108

109

Convergence

Output for
n = 105

“T” “H” or “H” “T”



Example

Monte Carlo methods - applications in C++ 16

Bacteria are grown in culture dishes in a laboratory.

Experience tells us that on average in this lab 20% of the dishes 

become contaminated by unwanted bacteria (thus spoiling the culture).

Question:

If the lab is growing bacteria in ten dishes, what is the probability that 

more then half of the dishes will become contaminated?

Solution:

We have ten dishes, P(“contamination of each dish”) = 0.2

Use a Monte Carlo experiment to test each dish against the probability 

of 0.2. Repeat this n times and count the number of times m where 

more than 5 dishes become contaminated.

Then n / m  P(“more than 5 dishes are contaminated”) as n  

Experimental definition of probability



C++ code

Monte Carlo methods - applications in C++ 17

#include <iostream>

#include <cstdlib>

using namespace std;

int main() {

int n = 1e8;

int m = 0;

for (int i=0; i<n; i++) {

int k=0;

for (int j=0; j<10; j++) { // 10 dishes

double r = rand()/(RAND_MAX+1.0);

if ( r < 0.2 ) k++; // contaminated

}

if (k>5) m++; // > 5 dished spoiled

}

cout << m/double(n) << endl;

}

0.006365

0.01

0.0057

0.00672

0.006291

0.006374

0.006365

0.006368

n

103

104

105

106

107

108

109

Convergence

Output for
n = 108

time = 12 s

true = 0.637%

Ten dishes

P(“contamination”) = 0.2

P(“> 5 dishes contaminated”)?

Binomial distribution.


